Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells
نویسندگان
چکیده
Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.
منابع مشابه
اثر 6 هفته تمرینات استقامتی بر TNF-α سرمی و حجم تومور موشهای حامل تومور پستان
Background and Objective: Breast cancer is a genetic and chronic inflammatory disease with an increasing incidence among Iranian women. Researchers have shown that regular exercise is presumed to have prophylactic effect and adjuvant therapy in inhibition of tumor growth. So the aim of this study was to assess the effect of endurance training on serum TNF-α in breast cancer bearing mice. Materi...
متن کاملفاکتور نکروزدهنده تومور آلفا و راهکارهای مهار آن: مقاله مروری
Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine produced by a variety of cells, including hematopoietic and non-hematopoietic cells, malignant cells, macrophages, B lymphocytes, T lymphocytes, natural killer cells, neutrophils, astrocytes, endothelial cells, and smooth muscle cells. TNF-α is a homo-trimeric molecular whose individual subunits are composed of antiparallel beta...
متن کاملHistone deacetylase inhibitors suppress the inducibility of nuclear factor-kappaB by tumor necrosis factor-alpha receptor-1 down-regulation.
Recently, the inhibition of histone deacetylase (HDAC) enzymes has attracted attention in the oncologic community as a new therapeutic opportunity for hematologic and solid tumors including non-small cell lung cancer (NSCLC). In hematologic malignancies, such as diffuse large B-cell lymphoma, the HDAC inhibitor (HDI), suberoylanilide hydroxamic acid (SAHA), has recently entered phase II and III...
متن کاملAntitumor activity of suberoylanilide hydroxamic acid against thyroid cancer cell lines in vitro and in vivo.
PURPOSE The histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), has multiple antitumor effects against a variety of human cancers. EXPERIMENTAL DESIGN We treated several anaplastic and papillary thyroid cancer cell lines with SAHA to determine if it could inhibit the growth of these cells in vitro and in vivo. RESULTS SAHA effectively inhibited 50% clonal growth of the an...
متن کاملSuberoylanilide hydroxamic acid sensitizes human oral cancer cells to TRAIL-induced apoptosis through increase DR5 expression.
Suberoylanilide hydroxamic acid has been shown to selectively induce tumor apoptosis in cell cultures and animal models in several types of cancers and is about as a promising new class of chemotherapeutic agents. In addition, suberoylanilide hydroxamic acid showed synergistic anticancer activity with radiation, cisplatin, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017